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Abstract-An extension of recent analyses for the transverse motion of an elastic plate under a
transverse load is given which shows that the problem of the loading of a thin plate is a singular
perturbation one. Expressions are obtained for all the displacements and stress components in terms
of the mid-plane transverse displacement, w, and its derivatives. It is shown that in some cases w is
the solution of a standard biharmonic problem. Additionally it is shown how to derive other
approximations such as those of Kirchhoff, Mindlin and Reissner avoiding internal inconsistencies
and how they are related to the exact theory.

1. INTRODUCTION

This paper extends some recent work of Cheng[l] and Gregory and Wan[2] to determine
some exact expressions for the displacements in a plate which is subject to a transverse
loading. Additionally some observations are made on the formulation of the theories of
thin plates due to Mindlin[3], Reissner[4], Kromm[5] and Hencky[6] and the original work
of Kirchhoff[7] .

In Cheng's theory[1] an infinite order differential equation for the vertical mid-plane
displacement can initially be derived where higher than fourth-order derivatives are mul
tiplied by the square of the plate thickness, h. In the limit as h~ 0 the classical fOl.lrth
order inhomogeneous biharmonic equation of Kirchhoff is recovered. Thus plate theory is
confirmed to be a singular perturbation problem. The other theories lead to sixth-order
systems involving the mid-plane displacements and rotations and again exhibit singular
behaviour as the plate thickness tends to zero.

Gregory and Wan[2] show that if the boundary data are to produce a decaying solution
in the plate interior then the interior solution must satisfy certain boundary conditions.
Here it is shown that these conditions, with Cheng's exact displacement SOlution, can be
used to deduce a transformation of the mid-plane displacement variable, so that Cheng's
infinite order problem is reduced to precisely Kirchhoff's fourth-order equation with associ
ated boundary conditions.

It is also shown how Mindlin theory is related to Kirchhoff's and how the various
other approximate theories are connected to the extended Cheng theory.

2. EQUATIONS OF THREE-DIMENSIONAL LINEAR ELASTICITY

For simplicity it will be assumed that the elastic medium is linear and isotropic and
that it fills a region of space given by

- a ~ x ~ a, - b ~ y ~ b, - h/2 ~ z ~ h/2

where x, y, z are Cartesian coordinates and a and b are both much larger than h. The
quantity h will henceforth be referred to as the plate thickness. If the medium is subjected
to loads, suppose the resulting displacements are u, v, w, the normal stresses are (Jx, (Jy, (Jz
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and the shears are 't'xy, 't'm 't'yz in the respective Cartesian directions. The equations for the
strains are

(
ex) (U,x) (YX

y
) (V,x+u,y)

ey = V,y' Yxz = u,z+ w.x .
ez w,z Yyz W,y+v,z

For a linear isotropic medium the stresses and strains are related by

(1)

(2)

where E is Young's modulus, v Poisson's ratio and G = E/2(1 + v) is the shear modulus.
The equilibrium equations, in the presence of a body force F, are

In these equations ",IX" denotes differentiation with respect to IX. Equations (2) may be
inverted to express the stresses in terms of the strains to give

v

I-v

v

(2')

Elimination of the stresses and strains in terms of the displacements from eqns (2') and (3)
yields the simultaneous equations

(1-2v)
(1-2v)V5u+gradeo+ G F=O (4)

where V5 is the three-dimensional Laplacian operator, u = (u, v, w) and eo = div u (cf.
Szilard[8]).

The first step in Cheng's analysis is to express the displacement vector u in terms of a
vector potential A via the expression

2 1 d d'u = VoA - 2(1- v) gra IV A. (5)

Cheng does not establish that this is a unique expression for u. From eqn (4) the equation
for u is

-F 2(1-v) . 2
G = 1-2v grad diV u-curl u, v"#!

as
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V6U = grad div u-curl2 u

and so A satisfies

-F 2(l-v) 1
G = 1-2v grad div V6 A- 1-2v grad div grad div A-curl2 V6A

1
= -2- grad div (V6A-grad div A)+(grad div-cur12)V6A

1- v

as curl grad ¢ = °for any smooth scalar function ¢.
Hence

F 4- - = VoA
G
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(6)

as V6A - grad div A = curl2 A and div curl F = °for any smooth vector function F. It is
not difficult to show that eqns (5) and (6) apply in general, so that an arbitrary solution of
the three-dimensional elasticity equations can be expressed in terms of a vector potential.

Equation (5) is a vector form ofthe general solutions of the three-dimensional equations
quoted by Donnell (Table 3.1, pp. 12-14 of Ref. [9]) which were originally published by
the Italian mathematician Somigliana in 1894[10].

Note that when v = ~, eqn (5) gives

u = V6A-grad div A = -curl2 A

so div u = 0, i.e. v = ~ corresponds to the incompressibility condition.

3. PLATE ANALYSIS

In the analysis of plates, series expansions can be developed in terms of the plate
thickness. In pure bending problems u and v are odd functions ofz and w is an even function
of z. In the absence of body forces eqn (6) can be written, as shown by Cheng, as

where V is the two-dimensional Laplacian in x and y. This has formal solutions in z,
matching the symmetry condition, in which

1 .
A. = Vsm (zV)F. + z cos (zV).f., IX = x, Y

A z = cos (zV)Fz + ~ sin (zV)Jz. (7)

These contain six functions F.,.f. of x and y which are needed to fit the remaining boundary
conditions. As u has only three components, three conditions may be imposed arbitrarily.

From eqns (7)

and so eqn (5) gives
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1 { 2
W = - 2(1-v) COS (zV)(Fx,x+Fy,y-V Fz +2/z+fx,x+J;"y)

- zV sin (zV) (fx,x +J;"y +/z)} +2 cos (zV)/z.

This expression is considerably simplified if the F's and f's are chosen to satisfy the three
additional conditions

The equation for w then becomes

zV sin (zV)
w = 2 cos (zV)/z - 4(1- v)V 2 e

where e = -2V2(fx,x+J;"y+/z).
Also from eqns (5) and (8)

. 1 ( sin (ZV))
u = -2V SIn (zV)fx+ 4(1-v)V2 z cos (zV)- V e,x

and

. 1 ( sin (ZV))
v = -2V SIn (zV)J;,+ 4(1-v)V 2 Z cos (zV)- V e,yo

The f's can now be related to the displacements on z = O. From eqn (9)

w(x,y, O) = 2/z(x,Y) = w(x,Y)

and from eqns (10) as z approaches zero

u-+ -2zV 2fx = zu'(x,y), say

and

v-+ -2zV2J;, = zv'(x,Y), say.

With these expressions

and so the final expressions for the velocity fields are

(
u) = sin (zV) (u

l

) 1 ( ) _ sin (ZV)) (e,x)
v V v' + 4(1-v)V2 Z cos (zV V e,y

and

_ zV sin (zV)
w = cos (zV)w- 4(1-v)V 2 e

agreeing with Cheng's formulae.

(9)

(10)

(11)

(12)
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4. EQUATIONS FOR MID-PLANE DISPLACEMENTS FOR A LOADED PLATE

When the plate is loaded the normal stress on the surface may be supposed to have
the form

(Jz(x,y±h/2) = ±W(x,y)

with the surface shears zero, i.e.

LXZ(X,y, ±h/2) = LyZ(X,y, ±h/2) = O.

(13)

(14)

It is useful in plate theory to have equations for the bending and twisting moments and
shears. In the case of a normally loaded plate satisfying conditions (13), integration of the
equilibrium equations through the plate thickness in the absence of a body force yields

oMx oMxy oMxy aMy oqx oqy
~+---q =--+~-q =-+-+p=O
ox oy x ox oy y ox oy

where

(15)

f
hlZ

M x = (JxZ dz,
-hiZ

are the bending moments

f
hlZ

M xy = LxyZ dz
-hiZ

is the twisting moment and

f
hlZ

qx = LXZ dz
-hiZ

f
hlZ

My = (JyZ dz
-hiZ

f
hlZ

and qy = Lyz dz
-hiZ

are the shears.
Expressions (11) and (12) can be used to determine the moments and shears as

Eh {( 2S) [ 1 1 ( 1 )JMx = (1+v) -c+ hV V zu:x+ 4(1-v)VZ 2ve- V ze.xx

+ (c- ~~ + S:V) 2(1 ~V)V4 e,xx}

My = le:v {( -c+ ~~)[~z v:y+ 4(1 ~V)VZ (2ve- ~z e,yy)J

Eh {2S (2S) 1 }
qx = 2(1+v) hV(w,x+ u')+ c- hV 2(1_v)VZe,X

and
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Eh { 2s (2S) 1 }
qy = 2(1+v) hV(w,y+v')+ c- hV 2(1_v)VZe ,y (16)

where c = cos (hV/2) and s = sin (hV/2).
For small h, 2s/hV --+ 1 and c-2s/hV --+ O(h Z

) so that the moments are of 0(h 3
) and

the shears of O(h). The quantities u' and v' are the rotations. The extra terms in the shears
are novel O(h Z

) correction terms involving the in-plane strain since

An alternative form for the x-shear is thus

Eh {( 2s 1 ( 2S)) (2S) 1 }
qx = 2(1+v) hV - 2(1-v) c- hV (w,x+ U')+ c- hV 2(I-v)VZ (2sx,x+Yxy,y) .

Mindlin's theory, as will be seen later, is a model in which

where

i.e.

The corresponding factor in Reissner's theory, again see later, is

_ 2(1-v)(12-1O) )
()(R - hZVz +0(1 .

Conditions (13) and (14) may be written in terms of the mid-plane displacements. Thus

(
ShV) _ I shV I I Z I

c+ 4(1-v) (w,x+ u )- 4(1_v)V Z «u,x+ v,y),x+V u) =0

(
ShV) _ I shV I I 2 I

c+ 4(1-v) (w,y+v)- 4(1_v)V 2 (u,x+ V,y).y+V v) =0

and

2s _ I _ I ( 2S) 1 I I Z _ 2(1 +v)p
hV«w,x+u),x+(w,y+v),y)+ c- hV 2(1-v) (u,x+v,y-V w)+ Eh =0. (17)

A single equation for Wmay be obtained by differentiating the first equation by x the second
by y and by eliminating the combination u:x + v:yusing the third equation. Alternatively if
three differential operators Db D z, D 3 defined by
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1-2v
D\ = 4(1-v)c, D2 = h/Vs, D 3 = h/2c+-Vs

are introduced, the following equations result:

865

(18)

82

D\-D28x2

82

-D28x8y

8
D 38x

(19)

This system has the determinant

_ (sin hV )D=4(I-v)hD\V2 ~-l

and so (u', v', w) satisfy

and

or

6 ( 2SC) 4 , ( hV )p,x
h2V2 1- hV V u = - c+ 4(1_v)s D

6 ( 2SC) 4, ( hV )p,y
h2V2 1- hV V v = - c+ 4(1-v)s D

and

6 ( 2SC) 4 _ ( hV) P
h2V 2 I-hV Vw= c- 4(I_v)s D

where

(20)

(21)

Equation (21)3 is an infinite order differential equation for the normal displacement at the
mid-surface, involving the two parameters h2 and D. In the limit as h -+ 0 with D finite,
eqns (21) reduce to the standard biharmonic equation deduced originally by Kirchhoff

(22)

Thus, depending on the boundary conditions, eqns (21) will exhibit singular perturbation
type of behaviour. We will next examine the boundary conditions that must be associated
with eqns (21).
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5. BOUNDARY CONDITIONS

It is a bit alarming that eqns (21) have infinite order as this suggests that wcan only
be determined if it satisfies an infinite number of boundary conditions. However, for certain
types of boundary data it turns out that a transformation of wsatisfies a transformed
problem which is of only fourth order. The key to finding this transformation follows from
some recent work of Gregory and Wan[2, 11]. In these papers they show, by use of the
Betti-Rayleigh reciprocal theorem, how to obtain a correct set of boundary conditions for
classical and higher order plate theories for any admissible set of edge data. Two cases
which they analyse in detail concern the semi-infinite plate x ~ 0, Iyl < 00, Izi :::; h/2 where
in their terminology

Case B:

o'x(o,y,z) = 6'x<y,z), v(O,y,z) = v(y,z), w(O,y,z) = w(y,z) (23)

or

Case C:

u(O,y,z) = u(y,z), T<y(O,y,z) = i'y(y,z), Txz(O,y,z) = i'z(Y,z) (24)

where C) denotes a known imposed value. In case B they show that to avoid the boundary
data causing a growing disturbance away from the boundary edge it is necessary to have

and

f
h/2

(z6'x+2Gzv,y) dz = °
-h/2

(25)

(26)

The boundary conditions that are appropriate to the interior solution, away from the plate
edge, require that the difference between the values of (Jx, v and w on x = °and the data
should satisfy eqns (25) and (26). If expressions (12) are used together with the governing
equations, eqns (17), then it can be shown that eqn (25) gives

(
ShV)- 1 ( 2S) 6 1 fh/2

c- 4(1-v) 1- hV h2V2 V
2
w= - D -h/2 (z6'x+ 2Gzv.y) dz

whereas eqn (26) gives

(
ShV)- 1 ( 2SC) 6 ( (2 - V)h

2
V

2
) _

c- 4(1-v) 1- hV h2V2 1- 8(1-v) w

(27)

(28)

A comparison of eqns (27), (28) and (21) shows that wis not the best choice of expansion
variable. The variables

and

* _ ( ShV)- 1 ( 2SC) 6 _
w - c- 4(I-v) 1- hV h2V 2W

(29)
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(
U*/) ( ShV)- 1 ( 2SC) 6 (U/)
v*/ = c- 4(I-v) 1- hV h2V2 v/

are to be preferred since then eqn (21h becomes

which eqns (27) and (28) imply is to be solved with

(
(2-V)h2V2)

V
2
w* and 1- 8(I-v) w*

prescribed. Equations (17) 1 and (17h then imply that

( */ */) _ ( shV )-1 ( ShV) 2*
u.x +v,y - - c- 4(1-v) c+ 4(1-v) V w

and so

(
CU*/) ( ShV) (w,t) shV (U,t/ +vn.x )

cv*/ = - c+ 4(I-v) w,t + 4(I-v)V2 (u,t/ +v,t'),y

I.e.

(
U*/) ( ShV)- 1 ( ShV) (w*)
v*/ = - C- 4(I-v) C+ 4(I-v) w;·

867

(30)

(31)

(32)

(33)

The structure is now clear, eqn (31) and boundary conditions (32) form part of a fourth
order boundary value problem for w* and eqns (33) are infinite series for the rotations u*/
and v*/ which may be computed by differentiation only. To leading order the rotations are
the negatives of the appropriate mid-plane gradients. To summarize the displacements,
satisfying the exact three-dimensional equations, can be written as

(
u) = (c- shV ) (1- 2SC)-1 h

2
V

2
{sin (zV) (U*/)

v 4(1-v) hV 6 V v*/

1 ( sin (ZV») (et)}+ 4(1-v)V 2 zcos (zV)- V ei

(
ShV) ( 2SC)- 1 h

2v2
{ zV sin (zV) }

w = c- 4(1-v) 1- hV -6- cos (zV)w*- 4(I-v)V2 e* (34)

where u*/, v*/ are given by eqns (33), w* satisfies eqn (31) with appropriate boundary
conditions, C = cos (hV/2), S = sin (hV/2) and

e* = u,t/ +v,t/ - V2w*.

It is also possible to express the displacements solely in terms of the quantity w*. The
relevant expressions are
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(
u) = _( _ 2SC)-1 h

2
V

2
{Sin (zV) ( ShV)

v 1 hV 6 V c+ 4(1-v)

(
sin (ZV») C } (w~)

+ z cos (zV) - V 2(1-v) w~

and

_ ( _ 2SC)- 1 h
2v2

{ (_ shV ) zV sin (ZV)c} *
w - 1 hV 6 cos (zV) c 4(1-v) + 2(1-v) w. (35)

The expressions for the moments and shears are also much simpler than expressions (16).
They are

Mx = -D(W~x+VAW~y)

My = -D(W~y+VAW~x)

Mxy = - D(l - VA)W~y

qx = -DV2W~

and

(36)

where

These agree with the formulae of Timoshenko and Woinowsky-Kreiger (p. 102 of Ref.
[12]) which are written in terms of wand apply for the case V 4w= O.

Expressions can also be derived for the stresses. These are

__~ (1- 2SC)-1 h
2
V

2
{sin (zV) [(1-2V ShV) * 2 *J

(Jx - 1-v2 hV 6 V 2 C+ 4 w,xx+ vcV W

C *}+ :2 z cos (zV)wxx

__~ (·1- 2SC)- 1 h
2
V

2
{sin (zV) [((1- 2v) ShV) * 2 *J

(Jy - 1-v2 hV 6 V 2 C+ 4 W,yy+vcV W

+ ~ z cos (ZV)W~y}

(Jz = 2(1 ~V2) (1- ~~y 1 h
2
;2 {z cos (zV)c- sin ~zV) (c- S~V)}V2w*

E (1 2SC)-1 h
2
V

2
{. (zV) (1- 2v) ShV) zcos (zV) } *

!xy= 1-v2 -7/V -6- smT 2 c+ 4 + 2 C W,xy

E ( 2SC)- 1 h
2
V

2
{ShV zV }

!xz = - 1-v2 1- hV -6- 4 cos (zV) - 2 sin (zV)c w~

E ( 2SC)- 1 h
2
V

2
{ShV zV }

!yz = - 1-v2 1- hV -6- 4 cos (zV) - 2 sin (zV)c w~.
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These are generalizations of the results of Timoshenko and Woinowsky-Kreiger (p. 103 of
Ref. [12]) where (1z can vary through the plate thickness due to an imposed load. The normal
load can be confirmed to be p/2 on z = h/2 by substitution in the expression for (1= and the
use of the result that DV4w* = p. It may also be checked that the stresses satisfy the
equilibrium equations exactly.

In case C Gregory and Wan[2] quote the conditions

and

f
h/2

(fxz +zfxy,y-2Gzu,yy) dz = 0
-h/2

f
h/2 [ (h

2
2-v ) ]-h/2 4Gzu-z 4 - -6-Z2 (4Gu,yy-2fxy,y)+VZ2'Lxz dz = O.

(37)

(38)

Once more it is possible to deduce conditions on the mid-plane vertical displacement W.
The conditions become

(
ShV)- 1 ( 2SC) 6 1 fh/2

c- 4(I-v) 1- hV h2V2 V
2
w,x = - D -h/2 (fxz +zfxy,y-2Gzu,yy) dz

and

(
ShV)- 1( 2SC) 6 ( V 2 2)-

C- 4(I-v) 1- hV h2V2 1+ 8(I-v) h V w,x

12
f

h/2 [ (h
2

2 ) - ]_ ·-v 2 _ 'Lxy,y V 2-

= - h3 -h/2 zu-z 4 - -6- z U,yy- 2G + 4G z 'Lxz dz.

Transformations (29) and (30) give the governing equation as eqn (31), this time with

(39)

(40)

(41)

prescribed. As Gregory and Wan[2] point out, if only the shears are given on the boundary
of a thin plate then eqns (39) and (40) can be combined (as h --+ 0) to give

2G (fh/2 ) 2G h
3

V2w,x+known = n -h/2 zu dz ,yy = n(-) 12 (w,xyy-known)

i.e.

V 2W,x+(l-v)w,XYy = known (42)

which is of course the well-known Kirchhoff condition. It may also be noted that the left
hand sides of boundary conditions (27), (28), (39) and (40) expanded in series of h2V2

reduce to the results of Gregory and Wan. Since in their case V 4w= 0, the expansions
truncate. A simple example of a simply supported plate under a sinusoidal load serves to
illustrate the usefulness of the formulae that have been derived in this section. Suppose the
plate occupies the region 0 ::0; x ::0; a, 0 ::0; y ::0; band - h/2 ::0; z ::0; h/2 and is acted on by the
transverse load
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. rex . rey
P = Po sm ---;; sm b' (43)

The boundary conditions for the simply supported edges are

W = 0, W,xx = 0 for x = 0 and a

W = 0, W,yy = 0 for y = 0 and b.

Kirchhoff's solution is

*
Po . rex . rey

W =-sm-sm-
rt 4D a b

where

(44)

The corresponding solution (35) is obtained by replacing V by irt. Equation (35) thus yields

(u) = ( _ sinh (rth»)-l h
2

rt
2

{Sinh (rtz) ( h h() _ sinh (rth(2)rth)
v I rth 6 oc cos (oc 2 4(I-v)

( h )
sinh (OCZ») cosh (OCh(2)} Po (re(a cos (rex(a) sin (reY(b»)+ z cos (ocz - -

oc 2(I-v) oc 4D re(b sin (rex(a) cos (rey(b)

and

__ ( _ sinh (OCh»)-1 oc
2
h

2
{ h )( h ( () sinh (OCh(2)OCh)

W - I och 6 cos (ocz cos och 2 + 4(1-v)

ocz sinh (ocz) } Po . rex . rey
- 2(1- v) cosh (och(2) oc4D sm ---;; sm b . (45)

The vertical displacement at the middle of the top surface is thus predicted as

oc 3h3 cosh (och) + I Po
We = 12 sinh (och)-och oc 4D'

The vertical displacement in the middle of the midsurface is

oc 3h3
{ sinh (OCh(2)OCh} I Po

wO=-6- cosh (och(2) + 4(1-v) sinh (och)-ochoc 4D

which for small h, for a square plate gives

_ ( re 2 (8-3v) h2
_ re 4 (227-157v) h4

•••)~
Wo- 1+ 20 (1-v) a2 16800(1-v) a4 + oc 4D

(46)

(47)

agreeing with Donnell (p. 244 of Ref. [9]). From the expressions for the moments in eqns
(36) it can be seen that this solution has M x = My = 0 on all the edges of the plate.

A uniform load Po can be represented by the Fourier expansion
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16po 00 00 1 . (2m-l)nx . (2n-l)ny
Po = 7 m~l n~l (2m-l)(2n-l) sm a sm b (48)

so the displacement at the middle of the plate in this case is

16po ~ ~ 1 3 3(
Wo = 6n2D m'::l n'::l (2m-l)(2n-l) ocmnh cosh (ocmnhj2)

sinh (OCmnhj2)OCmnh) 1 1+ ). -4 (49)
4(I-v smh (ocmnh)-ocmnh OCmn

and

_ J(2m-l)2 (2n-l)2)
OCmn - n a2 + b2 .

6. OTHER PLATE THEORIES

In most standard texts the precise assumptions that are made in deriving the equations
for the various approximate theories oflinear elastic plates are not made particularly clear.
In many cases the stated approximations lead to contradictions. This section contains an
attempt to clarify the situation and relates the various approximate theories to the exact
results.

The Kirchhoff-Love theory can be termed an assumed strain theory as the governing
equations are the strain displacement relations (1), the stress-strain relations

(ex) 1(1 -v) (ax) 1
ey = E -v 1 ay ' Yxy = G 'xy (50)

which replace relations (2), the equilibrium equation, eqn (3), and the assumed strain
condition

(
YXZ) (u,z +W,x)
Y~z = 0 or V,z ;zW,y = O. (51)

From eqns (51) and the symmetry conditions about z = 0 it can be deduced that w only
depends on x and y and u and v are linear in z. Thus

w = w(x,y)

u= -zw,x

v = -ZW,y' (52)

These agree with the terms of lowest order in z, as given by eqn (12) if
(u', v',w) = (- w,x, - w,Y' w). It next follows from eqns (52), (50) and the strain displacement
equations that

or

2(1 +v)
- 2zw,xy = E 'xy (53)



872

and so

K. E.: BARRETT and S. ELLIS

(54)

o )(w,xx)o W,yy
I-v W,xy.

from the equations for the moments.
Substitution of these expressions into eqn (15) yields finally the standard equation

(55)

The remaining stress components 'm 'yz and (Jz can be determined from the equilibrium
equation, eqn (3), once the solution for w is known. Thus

The corresponding shearsare given by

(57)

A comparison with eqns (16) shows that in Kirchhoff's theory the leading terms in the
shears are assumed to be zero, i.e. u' = - w,x and v' = - W,y so that e = - 2V2wand eqn
(57) are accurate to terms of O(h 2

).

In Mindlin's theory, which can also be regarded as an assumed strain theory, the
governing equations are assumed to be the strain displacement equations, eqns (1), the
stress-strain relations of Kirchhoff's theory, eqns (50), which replace the exact relations
(2) as before, the equilibrium equation, eqn (3), and the strain conditions and strain-stress
relations

where

(
YXZ'Z) _
Yyz,z - 0

8z

(
yxz) = ~ (,xz)
Yyz G 'yz

(58)

In this theory it can again be deduced that wdepends only on x and y and that u and v are
linear in z. However, unknown functions appear in the expressions for u and v. Thus eqns
(52) are replaced by
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w = w(x,Y)

The stress-strain relationships are
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(59)

_(ZOx.x) = ~(l -V)(Ux),
zOy,y E -v 1 uy

or

(60)

( ::) = 1~~~(: ~
~~ 0 0

and so

(61)

From the equations for the shears, eqns (58), and the strain displace:t;nent equations

(62)

eqns (15) and (63) give

The final equation for w is obtained by eliminating

-(Ox,x+Oy,y) = (Mx+My)/D(1 +v)

from this last equation to find

or

(64)

In Mindlin's theory it is more usual to have the governing equations as three coupled
second-order equations for w, Ox and Or

These are

(65)

and



874

and

K. E. BARRETT and S. ELLIS

(66)

A comparison between eqns (63) and (16) shows that to leading order in h, G' should be
equated to G. Mindlin's theory therefore effectively replaces

by some multiple (involving a differential operator) of w,x+ u' and similarly
e,y = -V2(W,y+V') + (u,y+v,x),x+ 2v,yy by the same multiple of W,y+v'. Mindlin's theory
involves the modelling (neglect) of the in-plane strain gradients.

The previous two theories involve an assumed strain field. Reissner's theory on the
other hand is an assumed stress theory. The basic governing equations are the strain
displacement equations, eqns (1), the stress-strain relations

( ex) = ~( 1
ey E-v

-v
1

(67)

where 1:ty is a modified shear, the equilibrium equation, eqn (3), and the assumed stress
field

(Jx az

(Jy bz

1:xy cz (68)

1:xz 1d( - Z2 +h2/4)

Lyz 1e( _z2+h2/4)

where a-e are functions of x and y only. Functions a-e may be related to the bending
moments and shears via the equations following eqns (50). Thus

(
MX) = h

3(a)
My 12 b
M xy C

The remaining stress component satisfies

and (69)

so

The strains may be deduced from eqns (67) as satisfying

(70)
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and

( u,x) =~( 1
V,y h3E-v

-v
(71)

(72)

As u and v are both cubic in z, U,y+v,x will also in general be a cubic. The system will be
inconsistent unless L:y differs from Lxy by a term which is cubic in z. Reissner's theory
involves mean values of the velocity fields defined by

12 fh/2 12 fh/2
Wx = - h3 uz dz, wy =- h3 vz dz

-N2 -N2

and

12fh/2 (h2
)

W = h3 _h/21W 4 _Z2 dz.

From eqn (71)

(73)

or

( Wx,x) = _+(1
Wy,y hE-v

-v
1

Also

)(
-w )1+v X,x

1+v -Wy,y'
6pvj5Eh

(74)

12 fh/2 -12 2(1 +v) 12
Wx,y+wy,x = - h3 -h/2 (u,y+v,x)z dz =~ Eh3

provided

i.e. consistency requires that the moment of the actual shear equals the moment of the
assumed shear. From eqns (74), (75) and the integrated equilibrium equations, eqns (15),
it follows that

SAS 24:9-B
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(
6v(l +v) 2)

D Wx,xxx + Wx,xyy + Wy,yxx + Wy,yyy - 5Eh V P - P = O. (76)

Further relations connecting W x with the shears can be obtained. Thus

i.e.

There is a similar expression for wy" The expressions for the shears are thus

(77)

(78)

Comparing eqns (63), (77) and (78) shows the differences between Mindlin and Reissner's
theories, namely that

is replaced by (5/12)(Eh/(l + v)), W is replaced by wand (0" Oy) by (wx, Wy).
Substitution of eqns (77) and (78) into eqn (76) yields after some manipulation

(79)

The three second-order equations for W, W X and W v are obtained from the integrated form
of the equilibrium equations, eqns (31) and (78) as

and

_ _ 24(1 +v)
(w,x-wJ,x+(w.y-wy),y+ 10Eh P = 0

_ h2
( l+v I-V) 6vh(l+v)

(w,x -wx)+ 5(l-v) wx,xx+-2- Wy,XY + -2-WX,yy - 25E(l-v)P,X = 0

_ h2
( l+v I-V) 6vh(l+v)

(w,y -wy)+ 5(l-v) Wy,yy + -2- Wx,xy + -2- wy,xx - 25E(I-v)P,y = O.

(80)

(81)

A comparison ofeqns (79) and (64) shows that a correction factor of (2 - v)/l0 has replaced
Mindlin's value of 2/n2 = 2.03. In a further theory due to Hencky (cf. p. 47 of Ref. [13]) a
factor of 1/6 appears. From eqns (18) the right-hand side of Cheng's equation for small h2

is
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(
(8 - 3V)h 2V 2

)

1- 40(I-v) P

877

so the "correct" correction factor is (1/10)(2-3/4v).
According to Kromm (cf. Chap. 5 of Ref. [13]) the factor is F = 2(I-E(a))/a2E(a)

where E(a) = (24/a 3)(a/2-tan h(a/2)) and a has a non-negative value. F is bounded by
1/6 and 1/5, whereas Cheng's value is bounded by (13/80) = (1/6)(39/40) and 1/5 for
0::::; v ::::;~.

7. RELATION BETWEEN MINDLIN AND KIRCHHOFF'S VARIABLES

It seems not to have been observed that there is a strong connection between Kirchhoff
and Mindlin's formulations. Let Wk be a solution of eqn (19) for some set of boundary
conditions, i.e.

(82)

then

(83)

satisfies the corresponding Mindlin equation, eqn (64), provided V4c = O. From eqn (65)

which is satisfied if

(84)

and V2c = O.
Equations (83) and (84) then reduce eqn (66) to

c,x = C,y = O.

So Mindlin and Kirchhoff's solutions are connected by eqns (83) and (84) provided C is a
constant for given, E, v and h dependent on the boundary conditions. There does not appear
to be such a simple relationship connecting Kirchhoff and Reissner's equations.

The simplest examples of this result are beam problems. We give below one such
example, that of a cantilever with uniform loading.

Kirchhoff's solution Wk satisfies

subject to

O::::;x::::;t (85)

and
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~;k (I) = ~;k (I) = O.

These equations have the solution

dWk q I 3 2 2
dx = £124 (4x -121x + 121 x).

Mindlin's solutions Wm , esatisfy

GA ~ (dWM _e) = _q, o~x ~ I
as dx dx

and

where A is the cross-sectional area and as is the shear factor, subject to

and

(
dWM ) de- -e (I) = -(I) = O.
dx dx

These have the solutions from eqns (83) and (84), or otherwise

(86)

In the beam cases it can be seen how the relationship is derived by integrating eqns (87). It
is also evident that for simple loading conditions the formulae are easily applied.

For plate problems few analytic solutions are available on which the formulae may be
used. One example is that of a circular plate, clamped on its edge with an applied uniform
loading.

Kirchhoff's solution Wk satisfies

subject to

and Wk(O) finite.
The solution is

(~ ~ (r~))2Wk =!!...-
rdr dr D

(87)
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p (2 2)2
Wk = 64D a -r

and

OWk P 2 2
-= --4r(a -r)or 64D .

Mindlin's solutions WM, 8r satisfy the polar forms of eqns (65), (66) subject to

OWM
wM(a) = 8(a) = a;:- (0) = 0

WM(O) finite.

These have solutions, again from eqns (83) and (84), given by

where

n2Eh
F= 24(I+v)'
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Allowing for the different shear factor this is identical to the result obtained by Reissner
and stated in Timoshenko and Woinowsky-Kreiger[12].

8. CONCLUSIONS

In this paper it has been shown how the exact solutions of the full linear elastic
equations can be written in terms of a Kirchhoff boundary value problem. Many of the
formulae derived are also applicable to a plate of non-uniform thickness provided the
elastic material is confined to lie between two antisymmetrically loaded, shear free surfaces
z = ±f(x,y). It has also been shown that the plate theories of Mindlin and Reissner are
approximations modelling the in-plane strain gradients. Because the exact theory shows
that the precise way in which the general solution depends on the plate thickness via terms
involving h3 and h2 for any given values of E and v it is also possible to obtain Kirchhoff
solutions from Mindlin or Reissner's approximations. As the precise connection between
the various approximate solutions and the exact solution is clear and stable numerical
methods based on finite elements are available for Mindlin plates these numerical solutions
may be utilized with more confidence.
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